Tag Archives: Center

6 Reasons SSDs Will Take Over the Data Center


The first samples of flash-based SSDs surfaced 12 years ago, but only now does the technology appear poised to supplant hard drives in the data center, at least for primary storage. Why has it taken so long? After all, flash drives are as much as 1,000x faster than hard-disk drives for random I/O.

Partly, it has been a misunderstanding that overlooks systems, and focuses instead on storage elements and CPUs. This led the industry to focus on cost per terabyte, while the real focus should have been the total cost of a solution with or without flash. Simply put, most systems are I/O bound and the use of flash inevitably means needing fewer systems for the same workload. This typically offsets the cost difference.

The turning point in the storage industry came with all-flash arrays: simple drop-in devices that instantly and dramatically boosted SAN performance. This has evolved into a model of two-tier storage with SSDs as the primary tier and a slower, but cheaper, secondary tier of HDDs

Applying the new flash model to servers provides much higher server performance, just as price points for SSDs are dropping below enterprise hard drive prices. With favorable economics and much better performance, SSDs are now the preferred choice for primary tier storage.

We are now seeing the rise of Non-Volatile Memory Express (NVMe), which aims to replace SAS and SATA as the primary storage interface. NVMe is a very fast, low-overhead protocol that can handle millions of IOPS, far more than its predecessors. In the last year, NVMe pricing has come close to SAS drive prices, making the solution even more attractive. This year, we’ll see most server motherboards supporting NVMe ports, likely as SATA-Express, which also supports SATA drives.

NVMe is internal to servers, but a new NVMe over Fabrics (NVMe-oF) approach extends the NVMe protocol from a server out to arrays of NVMe drives and to all-flash and other storage appliances, complementing, among other things, the new hyper-converged infrastructure (HCI) model for cluster design.

The story isn’t all about performance, though. Vendors have promised to produce SSDs with 32 and 64TB capacity this year. That’s far larger than the biggest HDD, which is currently just 16TB and stuck at a dead-end at least until HAMR is worked out.

The brutal reality, however, is that solid-state opens up form-factor options that hard disk drives can’t achieve. Large HDDs will need to be 3.5 in form-factor. We already have 32TB SSDs in a 2.5 inch size and new form-factors, such as M2.0 and the “ruler“(an elongated M2.0), which will allow for a lot of capacity in a small appliance. Intel and Samsung are talking petabyte- sized storage in 1U boxes.

The secondary storage market is slow and cheap, making for a stronger barrier to entry against SSDs. The rise of 3D NAND and new Quad-Level Cell (QLC) flash devices will close the price gap to a great extent, while the huge capacity per drive will offset the remaining price gap by reducing the number of appliances.

Solid-state drives have a secret weapon in the battle for the secondary tier. Deduplication and compression become feasible because of the extra bandwidth in the whole storage structure, effectively multiplying capacity by factors of 5X to 10X. This lowers the cost of QLC-flash solutions below HDDs in price-per-available terabyte.

In the end, perhaps in just three or four years flash and SSDs will take over the data center and kill hard drives off for all but the most conservative and stubborn users. On the next pages, I drill down into how SSDs will dominate data center storage.

(Image: Timofeev Vladimir/Shutterstock)



Source link

Facebook Debuts Data Center Fabric Aggregator


At the Open Compute Project Summit in San Jose on Tuesday, Facebook engineers showcased their latest disaggregated networking design, taking the wraps off new data center hardware. Microsoft, meanwhile, announced an effort to disaggregate solid-state drives to make them more flexible for the cloud.

The Fabric Aggregator, built on Facebook’s Wedge 100 gigabit top-of-rack switch and Open Switching System (FBOSS) software, is designed as a distributed network system to accommodate the social media giant’s rapid growth. The company is planning to build its twelfth data center and is expanding one in Nebraska from two buildings to six.

“We had tremendous growth of east-west traffic,” Sree Sankar, technical product manager at Facebook said, referring to the traffic flowing between buildings in a Facebook data center region. “We needed a change in the aggregation tier. We were already using the largest chassis switch.”

The company needed a system that would provide power efficiency and have a flexible design, she said. Engineers used Wedge 100 and FBOSS as building blocks and developed a cabling assembly unit to emulate the backplane. The design provides operational efficiency, 60% better power efficiency, and higher port density. Sankar said Facebook was able to deploy it quickly in its data center regions in the past nine months. Engineers can easily scale Fabric Aggregator up or down according to data center demands.

“It redefines network capacity in our data centers,” she said.

Facebook engineers wrote a detailed description of Fabric Aggregator in a blog post. They submitted the specifications for all the backplane options to the OCP, continuing their sharing tradition. Facebook’s networking contributions to OCP include its Wedge switch and Edge Fabric traffic control system. The company has been a major proponent of network disaggregation, saying traditional proprietary network gear doesn’t provide the flexibility and agility they need.

Seven years ago, Facebook spearheaded the creation of the Open Compute Project with a focus on open data center components such as racks and servers. The OCP now counts more than 4,000 engineers involved in its various projects and more than 370 specification and design packages, OCP CEO Rocky Bullock said in kicking off this week’s OCP Summit, which drew some 3,000 attendees.  

Microsoft unveils Project Denali

While Facebook built on its disaggregated networking approach, Microsoft announced Project Denali, an effort to create new standards for flash storage to optimize it for the cloud through disaggregation.

Kushagra Vaid, general manager of Azure Infrastructure at Microsoft, said cloud providers are top consumers of flash storage, which amounts to billions of dollars in annual spending. SSDs, however, with their “monolithic architecture” aren’t designed to be cloud friendly, he said.  

Any SSD innovation requires that the entire device be tested, and new functionality isn’t provided in a consistent manner, he said. “At cloud scale, we want to drive every bit of efficiency,” Vaid said. Microsoft engineers wanted to figure out a way to provide the same kind of flexibility and agility with SSDs as disaggregation brought to networking.

“Why can’t we do the same thing with SSDs?” he said.

Project Denali “standardizes the SSD firmware interfaces by disaggregating the functionality for software-defined data layout and media management,” Vaid wrote in a blog post.

“Project Denali is a standardization and evolution of Open Channel that defines the roles of SSD vs. that of the host in a standard interface. Media management, error correction, mapping of bad blocks and other functionality specific to the flash generation stays on the device while the host receives random writes, transmits streams of sequential writes, maintains the address map, and performs garbage collection. Denali allows for support of FPGAs or microcontrollers on the host side,” he wrote.

Vaid said this disaggregation provides a lot of benefits. “The point of creating a standard is to give choice and provide flexibility… You can start to think at a bigger scale because of this disaggregation, and have each layer focus on what it does best.”

Microsoft is working with several partners including CNEX Labs and Intel on Project Denali, which it plans to contribute to the OCP.

Hear more from Facebook and the Open Compute Project when they present live at the Network Transformation Summit at Interop ITX, April 30 and May 1 in Las Vegas. Register now!



Source link

How Spectre and Meltdown Impact Data Center Storage


IT news over the last few weeks has been dominated by stories of vulnerabilities found in Intel x86 chips and almost all modern processors. The two exposures, Spectre and Meltdown, are a result of the speculative execution that all CPUs use to anticipate the flow of execution of code and ensure that internal instruction pipelines are filled as optimally as possible. It’s been reported that Spectre/Meltdown can have an impact on I/O and that means storage products could be affected. So, what are the impacts and what should data center operators and storage pros do?

Speculative execution

Speculative execution is a performance-improvement process used by modern processors where instructions are executed before the processor knows whether they will be needed. Imagine some code that branches as the result of a logic comparison. Without speculative execution, the processor needs to wait for the completion of that logic comparison before continuing to read ahead, resulting in a drop in performance. Speculative execution allows both (or all) branches of the logic to be followed; those that aren’t executed are simply discarded and the processor is kept active.

Both Spectre and Meltdown pose the risk of unauthorized access to data in this speculative execution process. A more detailed breakdown of the problem is available in two papers covering the vulnerabilities (here and here). Vendors have released O/S and BIOS workarounds for the exposures. Meltdown fixes have noticeably impacted performance on systems with high I/O activity due to the extra code needed to isolate user and system memory during context switches (syscalls). Reports range from 5%-50% additional CPU overhead, depending on the specific platform and workload.

Storage repercussions

How could this impact storage appliances and software? Over the last few years, almost all storage appliances and arrays have migrated to the Intel x86 architecture. Many are now built on Linux or Unix kernels and that means they are directly impacted by the processor vulnerabilities, which if patched, result in increased system load and higher latency.

Software-defined storage products are also potentially impacted, as they run on generic operating systems like Linux and Windows. The same applies for virtual storage appliances run in VMs and hyperconverged infrastructure, and of course either public cloud storage instances or high-intensity I/O cloud applications. Quantifying the impact is difficult as it depends on the amount of system calls the storage software has to make. Some products may be more affected than others.  

Vendor response

Storage vendors have had mixed responses to the CPU vulnerabilities. For appliances or arrays that are deemed to be “closed systems” and not able to run user code, their stance is that these systems are unaffected and won’t be patched.

Where appliances can run external code like Pure Storage’s FlashArray, which can execute user code via a feature called Purity Run, there will be a need to patch. Similarly, end users running SDS solutions on generic operating systems will need to patch. HCI and hypervisor vendors have already started to make announcements about patching, although the results have been varied. VMware for instance, released a set of patches only to recommend not installing them due to customer issues. Intel’s advisory earlier this week warning of problems with its patches has added to the confusion.

Some vendors such as Dell EMC haven’t made public statements about the impact of the vulnerabilities for all of their products. For example, Dell legacy storage product information is openly available, while information about Dell EMC products is only available behind support firewalls. I guess if you’re a user of those platforms, then you will have access, however, for wider market context it would have been helpful to see a consolidated response in order to assess the risk.

Reliability

So far, the patches released don’t seem to be very stable. Some have been withdrawn, others have crashed machines or made them unbootable. Vendors are in a difficult position, because the details of the vulnerabilities weren’t widely circulated in the community before they subsequently were made public. Some storage vendors only found out about the issue when the news broke in the press. This means some of the patches may be being rushed to market without full testing of the impact when they are applied.

To patch or not?

What should end users do? First, it’s worth evaluating the risk and impact of either applying or not applying patches. Computers that are regularly exposed to the internet like desktops and public cloud instances (including virtual storage appliances running in a cloud instance)) are likely to be most at risk, whereas storage appliances behind a corporate firewall on a dedicated storage management network are at lowest risk. Measure this risk against the impact of applying the patches and what could go wrong. Applying patches to a storage platform supporting hundreds or thousands of users, for example, is a process that needs thinking through.

Action plan

Start by talking to your storage vendors. Ask them why they believe their platforms are exposed or not. Ask what testing of patching has been performed, from both a stability and performance perspective. If you have a lab environment, do some before/after testing with standard workloads. If you don’t have a lab, ask your vendor for support.

As there are no known exploits in the wild for Spectre/Meltdown, a wise approach is probably to wait a little before applying patches. Let the version 1 fixes be tested in the wild by other folks first. Invariably issues are found that then get corrected by another point release. Waiting a little also gives time for vendors to develop more efficient patches, rather than ones that simply act as a workaround. In any event, your approach will depend on your particular set of circumstances.



Source link

8 Ways Data Center Storage Will Change in 2018


The storage industry was on a roller coaster in 2017, with the decline of traditional SAN gear offset by enterprise interest in hyperconverged infrastructure, software-only solutions, and solid-state drives. We have seen enterprises shift from hard disks to solid-state as the boost in performance with SSDs transforms data center storage.

2018 will build on these trends and also add some new items to the storage roadmap. SSD is still evolving rapidly on four fronts:  core technology, performance, capacity and price. NVMe has already boosted flash IOPS and GB per second into the stratosphere and we stand on the brink of mainstream adoption of NVMe over Ethernet, with broad implications for how storage systems are configured going forward.

Vendors are shipping 32TB SSDs, leaving the largest HDD far behind at 16TB. With 3D die technology hitting its stride, we should see 50TB and 100TB drives in 2018, especially if 4-bit storage cells hit their goals. Much of the supply shortage in flash die is behind us, and prices should begin to drop again, though demand may grow faster than expected and slow the price drop.

Outside of the drives themselves, RAID arrays are in trouble. With an inherent performance bottleneck in the controller design, handling more than a few SSDs is a real challenge. Meanwhile, small storage appliances, which are essentially inexpensive commercial off-the-shelf servers, meet the need of object stores and hyperconverged nodes. This migration is fueled by startups like Excelero, which connect drives directly to the cluster fabric at RDMA speeds using NVMe over Ethernet.

A look at recent results reflects the industry’s shift to COTS. With the exception of NetApp, traditional storage vendors are experiencing single-digit revenue growth, while original design manufacturers, which supply huge volumes of COTS to cloud providers, are collectively seeing growth of 44%. Behind that growth is the increasing availability of unbundled storage software. The combination of cheap storage platforms and low-cost software is rapidly commoditizing the storage market. This trend will accelerate in 2018 as software-defined storage (SDS) begins to shape the market.

SDS is a broad concept, but inherently unbundles control and service software from hardware platforms. The concept has been very successful in networking and in cloud servers, so extending it to storage is not only logical, but required. We’ll see more SDS solutions and competition in 2018 than we’ve had in any year of the last decade.

NVMe will continue to replace SAS and SATA as the interface for enterprise drives. Over and above the savings in CPU overhead that it brings, NVMe supports new form-factor drives. We can expect 32TB+ SSDs in a 2.5 inch size in 2018, as well as servers using M.2 storage variants.

This has massive implications. Intel has showcased an M.2 “ruler” blade drive with 33+ TB capacities that can be mounted in a 1U server with 32 slots. That gives us a 1 Petabyte, ultra-fast 1U storage solution. Other vendors are talking up similar densities, signaling an important trend. Storage boxes will get smaller, hold huge capacities, and, due to SSD speed, outperform acres of HDD arrays. You’ll be able to go to the CIO and say, “I  really can shrink the data center!”

There’s more, though! High-performance SSDs enable deduplication and compression of data as an invisible background job. The services doing this use the excess bandwidth of the storage drives. For most commercial use cases, the effective capacity is multiplied 5X or more compared with raw capacity. Overall, compression reduces the number of small appliances needed, making SSD storage much cheaper overall than hard drives.

Let’s delve into the details of all these storage trends we can expect to see in the data center this year.

(Image: Olga Salt/Shutterstock)



Source link

10 Silly Data Center Memes


[Security Breach Report] Overall Impact of & Steps to Prevent Breaches

Despite the escalation of cybersecurity staffing and technology, enterprises continue to suffer data breaches and compromises at an alarming rate. How do these breaches occur? How are enterprises responding, and what is the impact of these compromises on the business? This report offers new data on the frequency of data breaches, the losses they cause, and the steps that organizations are taking to prevent them in the future.

MORE REPORTS



Source link